FC2ブログ

「足し算の順序」にあきれる

●「足し算の順序」にあきれる

某所で話題になっていた子どもの算数に関するニュース↓

■「足し算の順序」アナタは大丈夫?
http://r25.yahoo.co.jp/fushigi/jikenbo_detail/?id=20151121-00045993-r25

「くるまが5だいとまっています。9だいくるとなんだいになりますか?」
という設問に対し子どもが式の欄に記した「9+5」が『あとから9台来たんだから5+9じゃないとダメ』とバツにされたという。
《回答は同じでも、9を先に置いた式は“間違い”だという》ことを記した記事だった。

「5+9」と「9+5」は数学的には同じことだ。
「5+9」が正解で「9+5」が不正解というのでは数学的概念が成り立たない。
5台とまっているところに9台くるのと、9台きたところに5台とまっていたことは同じ。

バカげていて間違った指導をする先生がいるものだと呆れたが、こうした指導の意図も判るというような向きもあるようなので……ここでも所感を記しておくことにする。

設問の内容を数学的に正しく理解・解釈しているかが大事なのであって(この場合「2つの数の和」)、設問に出て来た数字の順番にこただわる必要は全くない。
なのに、この記事に対して──、
「5台あった場所に9台加わるから、5+9はわかる。
 9+5にわざわざ、順序を入れ替える意味がわらない」
という声もあった。

いったいどうして「順序」にこだわるのだろう?
記事の中では──、

> 現在、一部の小学校では、足し算を「合わせていくつ(合併)」
> 「増えるといくつ(増加)」という2つの考え方に分けて教えており、
> 「増加」の場合、「元からあったもの→後から加わったもの」の順番に
> 並べないと不正解になるのだ。

と記されている。
もしかすると、×をもらったという生徒は「増加」というイメージで考え、「5」に「9」をたす──すなわち「5」から9目盛り増やすよりも、「9」に5目盛り加えた方がカウントしやすいと考えたのかもしれない。だとすれば、考えやすい式を選択したことは褒められてよいことである。
いずれにしても「5+9」と「9+5」は同じことなのに後者を×にするのはおかしい。
「増加」で教える方針の元では「合併」の考えを否定するのか──という話にもなる。

例えば次のような足し算の問題があったとする──、

 1+2+3+4+5+6+7+8+9+10=

1から10まで順番に足して行くのは面倒だ。かしこい子ならば、

 1+2+3+4+5
+10+9+8+7+6

と数字を並べ替え、まず上下の数字を足し、

 11+11+11+11+11

として計算し、答が「55」であると考えるだろう。
あるいは──、

   1+2+3+4+5
+10+9+8+7+6

と和が「10」になる組み合わせを作って(上下に並べて)数字を足し、

+10+10+10+10+10+5

で「55」とするかもしれない。

足し算の数字を計算しやすいように組み替える柔軟な発想は数学的感性のようなものだ。
しかし「足し算の順序」の指導概念はこれを否定するものだ。
指導方針の解き方に即していない解き方だからという理由で、それが数学的に正しいにもかかわらず不正解とみなす教育は不適切きわまりないといわざるをえない。

問題を解くには色々なアプローチの仕方がある。ピタゴラスの定理を教える時に、教えた解き方以外で答えた解答は(正解であっても)×をつける──というような指導方針は間違っているし、数学的数学的発想の幅を狭めることになりかねない。
自由な発想で問題を解く──そう指導するのが本来のあり方だと思うが、それを許さない指導方向は大いに疑問だ。

僕は勉強に不熱心な生徒だっが、自分なりの解き方を考えるのは好きだった。
数学の問題で解き方を教わって導かれた答は、「納得」しただけで「自分で解いた」ことにはならない──それは他人の考えをなぞっただけ──そう考え、同じ問題を教わったのとは別の方法で自力で解いてみようとしたものだ。指導要綱に記された方法を用いた解答のみを正解とし、「教え方」から外れた別の解き方には(導き出された答が正解であっても)×をつけるという方針はとうてい受け入れがたい。
教育現場はセオリーオンリー主義で、認めるべき個性や多様性を許容できないほど硬直化しているのだろうか──そんな危惧すら抱かずにいられない記事だと感じた。

※加筆:この問題に関して、《問題通りに式をかけば「5+9」で、そうでなければ間違い──そう習った》と「順序」を重視する人が予想以上にいるようなので、少し加筆する。
「順序」を重視する人は次のような設問ではどう考えるのだろう。

Q:A子さんが通りかかったとき、駐車場が開門して車が5台でていきました。開門したスタッフに聞くと開門前には9台駐車していたといいます。すると駐車場には何台残っていますか?

これを《問題通り》に式にすると「-5+9」となる。
この場合、「9-5」と記した子は不正解なのだろうか?
《問題に出てくる数字の順番通りに式にしなければ×》というのであれば、×にあたる。
マイナスの数字の概念を習っていない子どもであれば、むしろ「9-5」と記したくなるのが自然だ。しかし「問題どおりに式を書かないと×になる」と教えられていたら、この設問にどう答えるべきか混乱するだろう。

この設問では正しい答えを導く式であるのだから「-5+9」も「9-5」も○でなくてはおかしい。
「設問に記される数字の順どおりに式を書かねばならない」ということに数学的整合性はない。
同様の理由で、元の問題で「9+5」を×にするのはおかしいと考えるしだい。



■エッセイ・雑記 ~メニュー~
https://hoshtani.blog.fc2.com/blog-entry-130.html

スポンサーサイト



コメント

No title
> 辺蟲憐さん

文章問題は、国語的な解釈能力も前提にはあると思いますが、要は「求められている数学的解釈を正しくできているか否か」ということ──この問題では「5と9の和」であって、そこができているのに「9」を先に記しているから不正解だとすることには激しく違和感を覚えます。

この文章問題で「9+5」は間違いだと教えることが「先での科学 経営…etc」にどのようにつながるのか、僕にはよくわかりませんが、算数では算数を正しく教えるべきだと考えます。
No title
私・・・
もう数十年前の小学生時代・・・
「問題の内容通りに数字を並べて解きなさい!」と言われ、△を戴いてました!(笑)
「答えは正解でも、式の内容(意味)が間違ってる」って言われ・・・
それ以来、計算式の数字の並べ方に神経質に成りました。
・・・が!
本当に数学に強い方は!
おっしゃる通り!
「自分なりの解き方を考える事の出来る人!」だそうですよ!!

決めつけや(しょ~もない)決まり事ばかりにとらわれて発想の自由の無い考え方は、勉学の邪魔だと・・・想いました!!!☆
No title
重箱の隅をつつくような問題で差をつけるより、もっと本質、考え方、発想の柔軟性を伸ばす教育が大事かと思います。
大袈裟かも知れませんが、決まりごとに従う者しか上にたてない社会につながりかねないです。

強いて言えば、文章を式で表して答えを出してくださいという記載があれば……
No title
> 今日も、こっそり自然観察!さん

このニュースを知った某所でも、《問題通りに式をかけば「5+9」で、そうでなければ間違い──そう習った》というようなコメントがありました。
すでにそう教える伝統(?)があるのかもしれませんね。

でも、ちゃんと考えると、この問題で求められているのは「2つの数の和」──その「和」を導くための過程を示したものが「式」で、「5+9」と「9+5」、どちらの式も「正しい式」だからこそ「正しい答」が得られているともいえるわけです。「5+9」が正しいから、それ意外の「9+5」を間違いだとする数学的根拠はありません(むしろ「間違い」とする判断が数学的には間違い)。なのに「足し算の順序」にこだわるのは、かなり硬直化した考え方だと思います。
No title
> すぬーぴーさん

この設問で問われているのは「2つの数の和」を求められるかどうかであって、それができているのに「×」というのは、おかしい──と激しく疑問に感じました。
教え方、教える側の問題を感じます。
No title
度々すみません。元々の記事は皆さんの様な反応を促すために面白く削ぎ落としているものと思えてなりません。現場で×に対してフォローがあったかどうかに大きく左右されてしまいますよね。少なくとも数式より文章問題が上位にあるんでしょうから交換法則が理解できてるレベルに対しての設問だと思いますよ。順序にこだわるこだわらないも結局は正しい算数の択一な訳で 14じゃないかもって子は育たないんでしょうね。

これがコンビニの駐車場だったとすれば台数時間差は物流 人事などに経営に影響するでしょうし 物質の混合であれば和である体積なども違ってきますよね。
No title
それと似た考え方を教育教材のセールスの人に言われたことがあります。
初めに私に問題を出してきて、それに答えると「その考え方は古いんです、今はこう教えないと学校で間違えと言われるんです」と言ってきて、今の親には子供の勉強を教えられないから教材が必要だと言う論理で教材を売りつけようとしてきたんです。わたしは「一つの考え方しか知らないより色んな考え方を知った方が良いだろ」と言って教材の購入を断ると、なんと!「子供が学校で困ったらいいんだ!」と捨て台詞を吐いて帰って行きました。
もう結構前の話ですが、記事を呼読んで思い出しました。
下らない発想ですよね。
学校の教育方針の意図が理解できません。
No title
> 辺蟲憐さん

ネット上の記事が検索数を上げるために、あざとい書き方をしていることはよくあり、それに関して思う所も色々ありますが、それはまた別のテーマとして。

今回僕は「《この記事に書かれた内容(「9+5」と記した子が×をもらった)》に関して、どう感じたか」ということを記しました。何度もくり返していますが、この設問で問われているのは(問われるべきは)、《2つの数の和》であるべきです。《「9+5」を不正解とすること》が正しいか否かという話です。

「コンビニの駐車場だったとする台数時間差」や「物質の混合(化合?)による体積の変化」がこの設問と、どう関係があるのでしょう? 問題の本質から離れ、飛躍がすぎると思います。
No title
> ジョブ6さん

「今の教育方針」をネタにした教育セールスというのもあるのですね。
子ども(や親が)、「今の教育方針」を忖度して「ご希望の解答」を出すようなことをしているとすれば、なげかわしい。
「納得できないけど、そう教わったから」という割り切り方では数学の理解は進まないと思います。
それにしてもセールスマンの捨て台詞はヒドイですね。
No title
あーそれは 「先での科学 経営…etc」にどのようにつながるのか にレスらせて頂きました。
先での ですので飛躍が過ぎますね。
失礼しました。
正しいか否か は冒頭にレスらせて頂いた通り 同感ですが 不正解とする時期があるのではと思っています。
No title
> 辺蟲憐さん

数学(算数)の良い所は「正しいか」「誤りか」がハッキリ道理で示せることです。
《「9+5」を不正解とすること》が正しいか否かは数学的な問題で、相手や時期によって変わるものではない──というのが僕の認識です。
その数学の根幹的な普遍性を、教える過程で都合よく曲げても構わないという考え方は、教える側の傲慢と怠惰以外の何ものでもないと僕は考えています。
No title
文章問題で「順序」を重視している人が少なからずいるようなので、本文に少し追記した。
No title
何だか教える側は大変そうですね。
教師にならなくて良かった。
コンビニとは言わないまでも 近々 教えられる側は数式が複雑化し 数式を立てる上で はたまた計算も順序立てないと間違えるだろうし なので初歩から順序は大事なのかもしれないし…。
No title
> 辺蟲憐さん

ですから、「計算の順序」は「設問の順序」にとらわれる必要はない──と言っているわけです。考えやすいように・計算しやすいように式を構築することが大事なのでしょう。
論拠も示さず「順序は大事」と抽象的なことを言われても、この問題とどう絡んでいるのかさっぱりわからず飛躍についていけません。
No title
こんばんは。
抽象的 飛躍 はぶっちゃけ私のことですよね。w
呉々も私なら◯にしてますから って言うか むしろ独創的な考え方をした上に 間違えた子に興味?を持ちます。
抽象的 飛躍 と言われても仕方ないか…。w

加筆の設問に対して『あとから9台来たんだから5+9じゃないとダメ』的に言うと『あとから5台出たんだから9-5じゃないとダメ』なんじゃないでしょうか。まあ数学的にはできても何も無いとこから5台は出れませんから あとから9台とわかったという設問の順序じゃないんでしょうね。
No title
> 辺蟲憐さん

> 抽象的 飛躍 はぶっちゃけ私のことですよね。w

そうです。コメントするなら、他者が読んでも何を言っているのか判るように記していただきたい。
「5+9と9+5は違う事を教える時期の問題な気がします」に始まり「初歩から順序は大事なのかもしれないし」まで、何を根拠にどうしてそう考えるのか示されず、それがこの問題にどう絡んでいるのか不明確なまま話が上滑りしているように思えてなりません。正直、何度もくり返しつきあわされる方は不快です。

加筆の設問は《問題通りに式を書かなければ間違い──そう習った》という意見に対し、そうならない例もありうる──ということを示したにすぎません。
No title
随分前ですが、とあるTV局のドキュメンタリー番組で、アメリカの名門大学に世界中から集まった優秀な皆さんに、物理の先生から難しい計算式が出題されました。正解よりも解答をどのように導き出すのか、アプローチの方法や柔軟な発想を主眼とする内容でした。教育の成果は20年後に現れると言いますが、その時日本はどのような国になるのでしょうか( ̄_ ̄)
No title
> skittoさん

数学や物理の問題も含めて、何か問題に直面したとき、それをどうとらえ考えるか──という柔軟性や創造性が大事だと僕も思います。
数学は本来、そうした創造性や思考の柔軟性を培う分野だと僕は考えているのですが、今回のエピソードなどを知ると、算数教育は硬直化に向かっているのではないか……と疑ってしまいたくなります。
No title
不快に思われた事 深くお詫びします と同時に 真摯に答えて頂いた事 感謝します。
掲題の あきれる について あきれられなかった旨 コメントさせていただきました。
力不足ご容赦ください。
No title
> 辺蟲憐さん

コメント欄は私信欄ではありません。公開の場です。この記事を閲覧した不特定多数の第三者が読むことを念頭に置いて下さい。

コメント欄についてはスパム対策で承認制にしてはいますが、基本的にはコメントは公開する方針でやっています(今のところ)。
僕の返信コメントは「第三者」を意識して「記事によせられたコメントに対する回答」として記しています。私信であれば返信しません。

コメント欄も不特定多数の人が目にする場であるという前提で、コメントするさいには第三者の読み手にわかりやすく、いたずらに煩雑にせぬようお願い致します。

管理者のみに表示

トラックバック